首页> 外文OA文献 >MapReduce Algorithms for Inferring Gene Regulatory Networks from Time-Series Microarray Data Using an Information-Theoretic Approach
【2h】

MapReduce Algorithms for Inferring Gene Regulatory Networks from Time-Series Microarray Data Using an Information-Theoretic Approach

机译:用于推断基因调控网络的mapReduce算法   使用信息理论方法的时间序列微阵列数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gene regulation is a series of processes that control gene expression and itsextent. The connections among genes and their regulatory molecules, usuallytranscription factors, and a descriptive model of such connections, are knownas gene regulatory networks (GRNs). Elucidating GRNs is crucial to understandthe inner workings of the cell and the complexity of gene interactions. Todate, numerous algorithms have been developed to infer gene regulatorynetworks. However, as the number of identified genes increases and thecomplexity of their interactions is uncovered, networks and their regulatorymechanisms become cumbersome to test. Furthermore, prodding throughexperimental results requires an enormous amount of computation, resulting inslow data processing. Therefore, new approaches are needed to expeditiouslyanalyze copious amounts of experimental data resulting from cellular GRNs. Tomeet this need, cloud computing is promising as reported in the literature.Here we propose new MapReduce algorithms for inferring gene regulatory networkson a Hadoop cluster in a cloud environment. These algorithms employ aninformation-theoretic approach to infer GRNs using time-series microarray data.Experimental results show that our MapReduce program is much faster than anexisting tool while achieving slightly better prediction accuracy than theexisting tool.
机译:基因调控是一系列控制基因表达及其程度的过程。基因及其调节分子之间的联系,通常是转录因子,以及这种联系的描述模型,被称为基因调节网络(GRN)。阐明GRN对了解细胞的内部运作以及基因相互作用的复杂性至关重要。迄今为止,已经开发了许多算法来推断基因调控网络。但是,随着鉴定出的基因数量的增加和相互作用的复杂性被发现,网络及其调控机制变得难以测试。此外,要通过实验结果进行搜索需要大量的计算,从而导致数据处理速度很慢。因此,需要新的方法来快速分析由细胞GRN产生的大量实验数据。为了满足这一需求,如文献所报道的,云计算是有前途的。在此,我们提出了新的MapReduce算法,用于在云环境中的Hadoop集群中推断基因调控网络。这些算法采用信息论的方法,利用时间序列微阵列数据来推导GRN。实验结果表明,我们的MapReduce程序比现有工具快得多,而预测精度却比现有工具好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号